
11/14/11

1

Learning to play like a programmer: web mash-ups and scripting for beginners, Digital

Humanities conference, Hamburg July 2012 by Mia Ridge (twitter: @mia_out, blog

http://openobjects.blogspot.com/, homepage http://www.miaridge.com/)

These slides should contain enough detail to remind you of what you've learnt in the

workshop.

Welcome!

My goal is to get you excited about the possibilities of programming, to help you

understand something of how programmers think, to give you some ways to explore data

and start to work out how you might want to manipulate it. I've left lots out, but hopefully

this small taste will get you interested in playing with more code and exploring

computational thinking.

1

11/14/11

2

[Keep on screen while people are settling in so they know they're in the right room and can

start checking what they've got, and passing out memory sticks with the exercises on

them.]

If you're on a Mac, TextEdit won't show you the raw code, you'll need to download another

free tool like Smultron (http://sourceforge.net/projects/smultron/ for older Macs,

http://www.peterborgapps.com/smultron/ for newer Macs) or TextWrangler

(http://www.barebones.com/products/textwrangler/). Notepad will work on PCs, as will

WordPad at a pinch but you can also try Notepad++ (http://notepad-plus-plus.org/)

2

11/14/11

3

Before I get into this, I want to pair you up. Hands up if you've got some previous programming experience or been on a trai

You'll work on exercises together, helping each other figure it out. I want to hear conversation during the exercises!

11/14/11

4

There's a bit of talking to get out of the way first, so that we're all caught up on jargon...

4

11/14/11

5

You'll work on exercises together, helping each other figure it out. Ideally you're now paired

up with someone with different experience levels to you...

The aim is to consolidate the skills you're learning, to help them stick in your brain. It's

hard in the time we have here, but maybe you'll be inspired to find a mentor or partner and

keep learning afterwards.

Any questions before we go on?

5

11/14/11

6

This is the “don't be scared” slide! Computers are really picky about spelling, white space,

matching quote marks, how sentences end... Think of your most pedantic friend, and

multiply that by 1000. It's like dealing with a grumpy six year old - it might be tricky to

negotiate, but it's not going to kill either of you.

Thinking computationally is like cooking a few courses for a fancy dinner party – you learn

what needs to be prepped in advance or just before serving, which steps must be done in a

particular order and what can be done at any time.

Hard fun – phrase comes from gaming – when something is challenging it's even more

rewarding when you finally crack it. A lot of my 'don't be scared' message is aimed at

getting you over those first hurdles and into the rewarding stuff. Persistence (or

stubbornness) is one of the key characteristics of a good programmer. The process of

finding a path through something you're still figuring out is something programmers and

researchers have in common.

Computer code is a lot like poetry: it's compact, dense and obscure at first, but you'll start

to learn how to unpack it and make it readable.

On behalf of the programmers you work with, I should point out at the start that

6

programming well is a skill and a craft where experience pays - you won't go back knowing

how to do their job, but you will understand something of how they think.

11/14/11

6

11/14/11

7

I'm currently a PhD student in digital humanities in department of history at Open

University, working on crowdsourcing and spatial history (i.e. participant digitisation and

spatially indexed historical materials from Early Modern England). Before that, I worked as

a programmer, user experience designer and/or systems analyst for the Science Museum,

the Museum of London, Museum Victoria and in the commercial sector from the mid-90s.

I taught myself HTML around 1994, then JavaScript around 1996... Somewhere along the

way I went back to uni and did a postgrad computer science degree to learn how to

program properly.

Why does 'self-taught' matter? Because from little things, big things grow... The web is still

new enough that many developers of my generation were originally self-taught. The web

made programming accessible (view source, etc) and then it became something you could

do for a living.

7

11/14/11

8

Try to keep it brief – one sentence intro on your interest in the digital humanities. If you've

got any programming or HTML experience, mention it!

8

11/14/11

99

11/14/11

10

The sense I'm which I'm using the term has nothing to do with illegal access, whether

phones or computers. It's tinkering, playing, about using your ingenuity and the tools

available to you to get as much done as you can in a limited time.

10

11/14/11

11

Hacking means getting results by whatever means necessary in the limited time you have

to play; or making stuff work even if it's not elegant.

Hack days are time away from the normal concerns of the office in 'an environment free

from political or monetary constraints' - and often free from documentation, testing, etc!

While at Yahoo, Chris Heilmann summed it up as: 'hack days are about innovating and

playing with our own systems' and 'making something work regardless of the

circumstances' http://www.slideshare.net/cheilmann/what-the-hack If a hack works, you

can go back and tidy it up later.

Hack days don't have to be all about code. This image is from an event I ran at the V&A

with Katy Beale. Participants were provided with markers, print-outs of objects, glue,

scissors, paper, and asked to create 'their perfect museum experience' with paper

prototypes.

11

11/14/11

12

What's a mashup? In the first of many dodgy food metaphors, a mashup is like fusion food... It

could be French methods applied to Asian vegetables, or Indian spices in Japanese desserts...

11/14/11

13

Or, more formally, a mashup is a web page, website or app that combines data and services

to create something new. We take them for granted now, but it wasn't that long ago you'd

have to try and find the best hotel in a new city without being able to see all the options on

a map. Mashups were made possible by APIs like the Google Map API... This example

combines a tourist sites dataset with a list of hotels and displays them both on a map.

13

11/14/11

14

What's an API? To continue the food analogy, an API is a menu of options. Just like in a
fast-food restaurant, if it's not on the menu, you can't have it, so there's no point asking for
a Whopper in McDonalds. But maybe you can ask them to hold the pickles...

Many APIs are a bit more sophisticated than that, and you can think of them as a menu of
ingredients. The ingredients might be lists of objects, images, people or events that match
search criteria, or a specific object, image, etc.

APIs let people make things that organisations haven't the resources to make themselves,
or wouldn't have thought of making. They enable new questions to be asked by showing
data in different ways or by combining it with other types of data – maps, timelines, other
GLAM collections, external data sets...

There are other names for things like APIs – 'web services', linked open data, etc, but the
principle is the same.

14

11/14/11

15

The basics of programming are not rocket science. Thinking computationally requires attention to detail, and the ability to

An algorithm is a step-by-step procedure for performing a function. As you'll see through the many food analogies today, I thin

11/14/11

16

Computers are smart, but they're also really stupid. It's a bit like that scene in Fantasia where the brooms keep multiplying

11/14/11

17

Computers run one specific set of instructions after another. These instructions are called

'algorithms', which makes them sound wonderfully fancy.

These algorithms should be well-defined instructions. They should be unambiguous –

computers can't guess what you mean even when it's obvious to a person. Computers are

like that gullible friend it's really easy to play tricks on: they'll just do whatever you set

them to do, so it's best to make sure you're asking them to do sensible things.

Write pseudo-code then figure out the syntax for the language you're working in. Think

about right place – right time (right order), operating on the right thing (without side-

effects like not changing anything it's not meant to). Even if you don't end up coding things

yourself, expressing your ideas in pseudo-code will help you figure exactly what you need it

to do and what input data or actions it will work on.

17

11/14/11

18

Writing pseudo-code is a bit like making notes about a recipe you know reasonably well –

it's enough to remind you what the ingredients are, what order things have to be done in,

what temperature the oven needs, but it's not enough detail to give it to a friend to try and

make it. Writing it down means you have to think clearly about what you actually want.

Remember how I said computers were stupid? You often have to tell them when you're

done, cos they can't figure it out for themselves and they'll just keep going and going and

going.

Pseudo-code is also useful for figuring out what's going on in someone else's program –

you can add comments to explain it to yourself while you're figuring it out.

18

11/14/11

19

Different languages make different things easy or hard or offer more shortcuts. Just like

human languages – some are good at talking about melancholy, others about love.

Scripts can run on a big shiny web server – a bit like ordering pizza, it's all cooked in an oven

somewhere else and brought to your door – or locally in your browser – like cooking a pizza

in your oven at home.

The advantage of JavaScript is that it can be run locally, from a text file. You don't need a

web server. You do need a web server for languages like PHP, Python or Ruby. I wanted to

keep things simple so you can concentrate on learning so I've gone for a scripting language

you can run without a webserver, but what you learn here can help you with other

languages.

I'm going to show you how JavaScript can be run without anything except a browser now....

19

11/14/11

20

Because we can run (or cook) things locally, our code is in a simple text file, with a '.html'
extension to let the browser know it's a web page.

There's a lot going on here, so let's break it down a bit. You can open up the exercise file
and follow along.

At the top and bottom there's some HTML that sets up the page, and also puts special
labels (called IDs, shown in yellow bit) on some bits of text on the page. There are two
paragraphs on this page, one has the ID 'demo', the other 'random paragraph'.

We hide the JavaScript (the bits in <script> tags to stop browsers that can't read JavaScript
getting confused). We can hide it in the 'head' of the HTML page, or in HTML comments
(<!-- -->).

The bits in green are a function. A function is a pre-made set of instructions – like asking a
friend to make the pastry while you make the pie filling. A function has two bits – the
definition, where you tell your friend how you want the pastry to be made – and the
function call, where you actually ask for the pastry when you need it.

The bit in blue is an 'event handler' – it knows what to do when specific things (events)
happen, like the timer going off, or someone clicking a button. They act a bit like the way
our brains can hear our name in a crowd of noise – they're listening for something specific;
when they hear it, they usually ask a function to run, using the function call.

Looking at the code, can you guess what's going to happen when I click the button?
20

Click the button.]

11/14/11

20

11/14/11

21

Ok, enough watching me, it's time to get coding! What do you need to change in the code
to make the second paragraph display the date, instead of the first paragraph?

[First exercise - showing the text file is 'live' – we're going to change some text in the file
and reload the page to show how it's changed. Edit the function to change the bit that it
changes to 'randomparagraph' instead of 'demo' – save, reload the page, click the button,
show that it's changed – check that everyone's managed this ok.]

21

11/14/11

22

[leave up during exercise]

22

11/14/11

2323

11/14/11

24

Going with the cooking analogy, variables are containers – an egg carton, a milk jug, a bowl.

First, you create the variable - like making room on the bench before you get out the bowl.

Variable names can be anything you like as long as they're used consistently.

Then you tell the computer what you're going to put in it – 'assigning a value'. For

simplicity's sake, we'll say most variables are numbers or 'strings'. A string is a bit of text

that's treated literally – the computer passes it around without trying to figure out what it

means, like a kid missing double entrendres in adult conversations.

Operators are a bit like functions that do really simple things. A blender that smushes, a

frying pan that heats, a fridge that cools things. The first operator you'll meet is the plus

sign, which adds things together... But it does so in different ways depending on what the

variable is. Sometimes, the plus sign adds together two numbers, but it can also join two

strings into a longer one. Let's see it in action...

24

11/14/11

25

See what happens when you change various values or try different operators...

25

11/14/11

26

What did you learn about how operators and variables work? About scripting in general?

Did anyone try to test the differences between =, ==?

26

I'll explain more about passing values next, but for now, just remember that there's a way

to help you keep track of things. Document.write() is a very handy function when you're

beginning.

'Stubs' are useful for debugging. Writing out the values of your variables at different points

(e.g. before and after a function) can help you figure out what's going on.

Access to-browser debugging consoles: http://www.alistapart.com/articles/modern-

debugging-tips-and-tricks 'Launching the JavaScript Console' section

11/14/11

27

11/14/11

28

Remember how I said a function was a bit like your friend making pastry while you made

pie filling? Well, if it turns out your friend is really good at pastry, you can ask them to

make lots of different sorts of pastry, depending on what type of pie you're making. But you

don't want a bunch of different functions when most parts of them are the same, so you

make one function and add some detail depending on what's needed for different types of

pastry. You tell the function knows what kind of pastry you want by 'passing an argument'

when you call it.

This pseudo-code also shows some control structures – what happens depends on the

input to the function.

28

11/14/11

29

So, back to our document.write() function – we're going to pass it the text we want printed,
as an argument (ie in brackets).

Do it on the supplied text files or use the console on
http://www.w3schools.com/js/tryit.asp?filename=tryjs_events

Check the error console on your browser if it breaks, or have a think about whether you
want to use a string or a variable in different places. Discuss it in your pairs to figure out
what's going on, and I'll be around to check that each of you are getting it.

29

11/14/11

30

Exercise 4 builds on the file from Exercise 3.

11/14/11

31

You might find you want an ' and ' – including the white space. There are a few ways to do

it – creating another variable that stores whitespace, adding whitespace to someone's

name, including a string...

If anyone has an apostrophe in their name, they might run into an issue

http://www.w3schools.com/js/js_special_characters.asp

31

11/14/11

32

In the next section we'll look at visualisation tools. Visualisations can be products in their

own right, or you can use them to start to the explore shape of data. Visualisations include

timelines, maps, graphs, charts, word clouds.

I've included some object data released by the Science Museum Group (the parent

organisation of the UK's Science Museum, National Media Museum and National Railway

Museum) and from the Cooper-Hewitt Smithsonian Design Museum in these examples.

The files are in the folders on the USB stick.

32

11/14/11

33

11/14/11

34

11/14/11

35

11/14/11

36

11/14/11

37

Humanities data is only as good as the hundreds of people who've created, transcribed and

recorded it over the centuries or decades... Office tools like Excel and Access are useful for

quickly finding empty rows; or download Google Refine or use online spreadsheets.

Raw collections data often needs a bit of cleaning before it can be used. Heritage datasets,

particularly museum data, is often incomplete or contains fuzzy data that's fine for people but

hard for computers to cope with. We can agree among ourselves that 'c1905 means 'within

ten years of 1905' and 'c1900' means 'within fifty years of 1900' but how would a computer

know that? And what does it do when it encounters '1900s'? (For that matter, would an

ordinary person?) Specialised services that understand heritage data can help but there aren't

many of those. Data might also contain odd characters or unexpected empty fields that will

break scripts.

Sometimes humanities data is more vague about dates and places than a computer would like,

but that can't be helped. Converting words to numbers should be considered carefully where

it creates apparent precision from fuzziness – better to work to date ranges?

The necessity to leave out data that isn't clean enough is one reason visualisations should be

taken with a pinch of salt...

11/14/11

37

11/14/11

38

Data prep can also include making into a format like XML, JSON, CSV, TSV... Don't be put off by

the acronyms, you can break it all down into smaller tasks and do them one after the other.

11/14/11

39

These visualisation tools can help you understand which datasets are worth zooming in on,

and which reveal more from a 30,000 feet view. There's a sense of the deluge of data in the

digital humanities – visualisations can help us make more of the increasing sets of new digital

data, help us use this data to tell stories about the past that are better because of the context

provided by all this new data.

You might need to try out these visualisations and clean up the data to improve your results in

quick cycles.

NB: not all Google accounts have immediate access to Fusion tables, and the instructions

aren't clear about uploading a table vs creating a new one.

Thanks to https://github.com/patrickmj/ http://hackingthehumanities.org/ Patrick Murray-

John for sharing his tidied Cooper-Hewitt data; and for the Science Museum data, thank you,

Ant Beck! The cleaned data source was:

http://dl.dropbox.com/u/393477/Temp/chn11/NMSI_Object_Cleaned_With_Groupi

ng.txt

11/14/11

40

Things you might have discovered:

Lots of cleaning is required, especially for dates. What decisions did you make about keeping or deleting blank, uncertain or

Some visualisations are better for numbers, others for text

Work out what the tool is good at to focus your cleaning efforts, or select which columns of data to use

You might need to try different things to work out what the visualisation tool does

11/14/11

41

To insert a JavaScript into an HTML page, use the <script> tag.

Inside the <script> tag use the type attribute to define the scripting language.

The <script> and </script> tells where the JavaScript starts and ends (like before), but now it has a source 'src' field that

The script tag can go in the page or in a special bit at the top of the page.

You can use this to pull in libraries from several different sites.

11/14/11

42

* ok, you can, but let's not complicate things just yet

Being able to use libraries gives you access to cool tools like jQuery and MooTools as well as the visualisation tools listed

11/14/11

43

And well done – you've written your first JavaScript, learnt something of how programmers

think, and hopefully have some ideas for cool things you can make with humanities data...

Give yourselves a round of applause!

43

